a wafer metrology consortium under MAGNET

<span>THE</span> 450mm

THE 450mm


Advancing 450mm metrology 


According to ITRS, the expectation is that in 2018, chip manufacturers will start moving toward high-volume manufacturing (HVM) with 450mm wafers. Already today, these manufacturers are building pilot lines and readying facilities for this purpose. Israeli metrology companies plan on being at the forefront of this revolution.

Read more


The primary reason of moving to 450mm is cost; the 450mm manufacturing tools must be faster to enable more dies out, Such a change lead to a concomitant requirements in significantly updated metrology tools. It is this major step in chip manufacturing which the Metro450 consortium wants to utilize as a slingshot far advancing Israeli-based metrology companies.

Read more


Already today (in 2013), the large computer chip manufacturers are working on pilot lines for the 450mm wafer production. Based upon published reports, by 2018, at least some of these manufacturers will move toward high-volume manufacturing of chips on this wafer size.

Read more


Israeli metrology companies are fierce competitors. How are they able to get together in such a consortium? The answer lies in the type of knowledge they share. No information is shared that is machine-specific. Details about how the measurements are done are not shared. Instead, non-core-IP is revealed. The cooperation lies in cooperation in pre-competitive issues, such as those described in the work packages.

Read more

Around the world

Metro450 is an Israeli consortium which is cooperating with international consortia, including G450C, based in Albany, NY, and with several European projects, such as 450EDL and 450PR under the aegis of ENIAC. Metro450 Israel welcomes additional cooperation with similar bodies around the world.

News and Events

Three wavelengths parallel phase-shift interferometry for real-time focus tracking and vibration measurement
AU: Ney, M., Safrani, A., & Abdulhalim, I.
Experimental study of forces on freely moving spherical particles during resuspension into turbulent flow
AU: Traugott, H., & Liberzon, A.
On Energy-Optimal and Time-Optimal Precise Displacement of Rigid Body with Friction
AU: Ilya Ioslovich, Per-Olof Gutman, Ari Berger, Shai Moshenberg
Piezo-based miniature high resolution stabilized gimbal
AU: Karasikov, N., Peled, G., Yasinov, R., & Yetkariov, R.
Miniature precision stage for optics on LEO satellites
AU: N. Karasikov
Crystalline damage in silicon wafers and 'rare event' failure introduced by low-energy mechanical impact
AU: . Atrash, I. Meshi, A. Krokhmal, P. Ryan, M. Wormington, and D. Sherman
A rotational traveling wave based levitation device – Modelling, design, and control
AU: Ran Gabaia, Dotan Ilssara, Ran Shahama, Nadav Cohenb, Izhak Bucher
Modeling and closed loop control of near-field acoustically levitated objects
AU: Dotan Ilssara, Izhak Buchera, Henryk Flashner
A novel approach to the computation of polyhedral invariant sets for constrained systems
AU: Sheer, S., & Gutman, P. O.

Applied Materials and A*STAR’s Institute of Microelectronics to Advance R&D in Fan-Out Wafer-Level Packaging

Work Packages


WP 1: Wafer Handling / Chucking / Stepping

Work package 1 addresses the challenges for moving the wafer quickly and efficiently. The overall speed of movement is dependent upon both the physical movement and the settling time.

Read more

WP 2: Sampling Optimization

In order to determine if there are defects in the production of the dies, many points on the wafer are examined. Perhaps there is a better, more efficient method for determining just how many points really need to be checked. The goal of WP2 is to find more efficient sampling strategies than exist today.

Read more

WP 3: Wafer Damage and Contamination

With the larger wafer size and smaller critical dimensions of the 450 wafers, damage and contamination control become serious challenges. WP 3 attempts to determine the cause of some of the damage, and researches methods to reduce contamination in order to meet stringent specifications for the 450mm wafer era.

Read more

WP 4: 450mm Standard Calibration Wafer

It is the goal of WP4 to bring forth an industry-wide standard metrology calibration wafer. Such a wafer would help in monitoring the stability of the tool. It would also help in tool-to-tool matching.

Read more

WP 5: Fast Data Collection and Processing

With the move toward 450mm wafers, and the concomitant reduction in critical dimensions, the overall data and number of calculations increases dramatically. The goal of WP5 is to utilize off-the-shelf components in order to help in the configuration of a metrology-specific computer design.

Read more